Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 119(13): 2355-2367, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37517061

RESUMO

AIMS: Inflammatory cytokines play a critical role in the progression of calcific aortic valve disease (CAVD), for which there is currently no pharmacological treatment. The aim of this study was to test the hypothesis that interleukin-8 (IL-8), known to be involved in arterial calcification, also promotes aortic valve calcification (AVC) and to evaluate whether pharmacologically blocking the IL-8 receptor, CXC motif chemokine receptor 2 (CXCR2), could be effective in preventing AVC progression. METHODS AND RESULTS: A cohort of 195 patients (median age 73, 74% men) diagnosed with aortic valve stenosis (severe in 16.9% of cases) were prospectively followed by CT for a median time of 2.6 years. A Cox proportional hazards regression analysis indicated that baseline IL-8 serum concentrations were associated with rapid progression of AVC, defined as an annualized change in the calcification score by CT ≥ 110 AU/year, after adjustment for age, gender, bicuspid anatomy, and baseline disease severity. In vitro, exposure of primary human aortic valvular interstitial cells (hVICs) to 15 pg/mL IL-8 induced a two-fold increase in inorganic phosphate (Pi)-induced calcification. IL-8 promoted NFκB pathway activation, MMP-12 expression, and elastin degradation in hVICs exposed to Pi. These effects were prevented by SCH527123, an antagonist of CXCR2. The expression of CXCR2 was confirmed in hVICs and samples of aortic valves isolated from patients with CAVD, in which the receptor was mainly found in calcified areas, along with MMP-12 and a degraded form of elastin. Finally, in a rat model of chronic kidney disease-associated CAVD, SCH527123 treatment (1 mg/kg/day given orally for 11 weeks) limited the decrease in aortic cusp separation, the increase in maximal velocity of the transaortic jet, and the increase in aortic mean pressure gradient measured by echocardiography, effects that were associated with a reduction in hydroxyapatite deposition and MMP-12 expression in the aortic valves. CONCLUSION: Overall, these results highlight, for the first time, a significant role for IL-8 in the progression of CAVD by promoting calcification via a CXCR2- and MMP-12-dependent mechanism that leads to elastin degradation, and identify CXCR2 as a promising therapeutic target for the treatment of CAVD.

2.
J Mol Cell Cardiol ; 179: 18-29, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36967106

RESUMO

BACKGROUND: Calcific aortic stenosis (CAS) is more prevalent, occurs earlier, progresses faster and has worse outcomes in patients with chronic kidney disease (CKD). The uremic toxin indoxyl sulfate (IS) is powerful predictor of cardiovascular mortality in these patients and a strong promoter of ectopic calcification whose role in CAS remains poorly studied. The objective of this study was to evaluate whether IS influences the mineralization of primary human valvular interstitial cells (hVICs) from the aortic valve. METHODS: Primary hVICs were exposed to increasing concentrations of IS in osteogenic medium (OM). The hVICs' osteogenic transition was monitored by qRT-PCRs for BMP2 and RUNX2 mRNA. Cell mineralization was assayed using the o-cresolphthalein complexone method. Inflammation was assessed by monitoring NF-κB activation using Western blots as well as IL-1ß, IL-6 and TNF-α secretion by ELISAs. Small interfering RNA (siRNA) approaches enabled us to determine which signaling pathways were involved. RESULTS: Indoxyl-sulfate increased OM-induced hVICs osteogenic transition and calcification in a concentration-dependent manner. This effect was blocked by silencing the receptor for IS (the aryl hydrocarbon receptor, AhR). Exposure to IS promoted p65 phosphorylation, the blockade of which inhibited IS-induced mineralization. Exposure to IS promoted IL-6 secretion by hVICs, a phenomenon blocked by silencing AhR or p65. Incubation with an anti-IL-6 antibody neutralized IS's pro-calcific effects. CONCLUSION: IS promotes hVIC mineralization through AhR-dependent activation of the NF-κB pathway and the subsequent release of IL-6. Further research should seek to determine whether targeting inflammatory pathways can reduce the onset and progression of CKD-related CAS.


Assuntos
Estenose da Valva Aórtica , Calcinose , Humanos , Valva Aórtica/metabolismo , NF-kappa B/metabolismo , Estenose da Valva Aórtica/metabolismo , Interleucina-6/farmacologia , Indicã/farmacologia , Indicã/metabolismo , Osteogênese , Receptores de Hidrocarboneto Arílico/metabolismo , Calcinose/metabolismo , Células Cultivadas , Diferenciação Celular , RNA Interferente Pequeno/metabolismo , Sulfatos/metabolismo , Sulfatos/farmacologia
3.
Sci Rep ; 11(1): 7464, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33811249

RESUMO

Chronic kidney disease (CKD) worsens ischemic stroke severity in both patients and animals. In mice, these poorer functional outcomes are associated with decreased brain activity of AMP-activated protein kinase (AMPK), a molecule that recently emerged as a potential therapeutic target for ischemic stroke. The antidiabetic drug metformin, a well-known activator of AMPK, has improved stroke outcomes in diabetic patients with normal renal function. We investigated whether chronic metformin pre-conditioning can rescue AMPK activity and prevent stroke damage in non-diabetic mice with CKD. Eight-week-old female C57BL/6J mice were assigned to CKD or SHAM groups. CKD was induced through right kidney cortical electrocautery, followed by left total nephrectomy. Mice were then allocated to receive metformin (200 mg/kg/day) or vehicle for 5 weeks until stroke induction by transient middle cerebral artery occlusion (tMCAO). The infarct volumes were lower in CKD mice exposed to metformin than in vehicle-treated CKD mice 24 h after tMCAO. Metformin pre-conditioning of CKD mice improved their neurological score, grip strength, and prehensile abilities. It also enhanced AMPK activation, reduced apoptosis, increased neuron survival and decreased microglia/macrophage M1 signature gene expression as well as CKD-induced activation of the canonical NF-κB pathway in the ischemic lesions of CKD mice.


Assuntos
Metformina/uso terapêutico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle , Adenilato Quinase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Peso Corporal , Infarto Encefálico/sangue , Infarto Encefálico/complicações , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/genética , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Gliose/sangue , Gliose/complicações , Gliose/tratamento farmacológico , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/genética , Precondicionamento Isquêmico , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Metformina/sangue , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Modelos Biológicos , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/genética , Acidente Vascular Cerebral/genética
4.
Kidney Int ; 99(6): 1382-1391, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647324

RESUMO

In chronic kidney disease (CKD), calcium-sensing receptor (CaSR) expression and function have been extensively studied in parathyroid tissue and vascular tissues. To examine whether similar changes occurred in other tissues, we measured total and surface CaSR expression in monocytes of patients with various stages of CKD and healthy volunteers respectively in cross-sectional studies. We further explored in vitro the impact of uremic serum on CaSR expression in monocytes (U937 and THP-1 cell lines), and whether human peripheral blood mononuclear cells or U937 and THP-1 monocytes might modify vascular calcium deposition in rat carotid arteries in vitro. CKD was associated with a decrease in peripheral blood mononuclear cell CaSR expression both in total and at the monocyte surface alone (43% and 34%, respectively in CKD stages 4-5). This decrease was associated with a reduction in the ability of monocytes to inhibit vascular calcification in vitro. Pretreatment with the calcimimetic NPSR568 of peripheral blood mononuclear cells isolated from patients with CKD significantly improved monocyte capacity to reduce carotid calcification in vitro. The fewer peripheral blood mononuclear cells expressing cell surface CaSR, the more calcimimetic treatment enhanced the decrease of carotid calcium content. Thus, we demonstrate that monocyte CaSR expression is decreased in patients with CKD and provide in vitro evidence for a potential role of this decrease in the promotion of vascular calcification. Hence, targeting this alteration or following monocyte CaSR expression as an accessible marker might represent a promising therapeutic strategy in CKD-associated arterial calcification.


Assuntos
Monócitos , Receptores de Detecção de Cálcio , Insuficiência Renal Crônica , Calcificação Vascular , Animais , Cálcio , Estudos Transversais , Humanos , Leucócitos Mononucleares , Ratos , Calcificação Vascular/etiologia , Calcificação Vascular/prevenção & controle
6.
Toxins (Basel) ; 11(9)2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547340

RESUMO

Cardiovascular disease (CVD) is an important cause of death in patients with chronic kidney disease (CKD), and cardiovascular calcification (CVC) is one of the strongest predictors of CVD in this population. Cardiovascular calcification results from complex cellular interactions involving the endothelium, vascular/valvular cells (i.e., vascular smooth muscle cells, valvular interstitial cells and resident fibroblasts), and monocyte-derived macrophages. Indeed, the production of pro-inflammatory cytokines and oxidative stress by monocyte-derived macrophages is responsible for the osteogenic transformation and mineralization of vascular/valvular cells. However, monocytes/macrophages show the ability to modify their phenotype, and consequently their functions, when facing environmental modifications. This plasticity complicates efforts to understand the pathogenesis of CVC-particularly in a CKD setting, where both uraemic toxins and CKD treatment may affect monocyte/macrophage functions and thereby influence CVC. Here, we review (i) the mechanisms by which each monocyte/macrophage subset either promotes or prevents CVC, and (ii) how both uraemic toxins and CKD therapies might affect these monocyte/macrophage functions.


Assuntos
Calcinose/imunologia , Cardiomiopatias/imunologia , Macrófagos , Monócitos , Insuficiência Renal Crônica/imunologia , Animais , Humanos
7.
Sci Rep ; 9(1): 6432, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015533

RESUMO

Ischemic stroke is highly prevalent in chronic kidney disease (CKD) patients and has been associated with a higher risk of neurological deterioration and in-hospital mortality. To date, little is known about the processes by which CKD worsens ischemic stroke. This work aimed to investigate the cellular and molecular mechanism associated with ischemic stroke severity in an in vivo model of CKD. CKD was induced through right kidney cortical electrocautery in 8-week-old female C57BL/6 J mice followed by left total nephrectomy. Transient middle cerebral artery occlusion (tMCAO) was performed 6 weeks after left nephrectomy. Twenty-four hours after tMCAO, the infarct volumes were significantly wider in CKD than in SHAM mice. CKD mice displayed decreased neuroscore, impaired ability to remain on rotarod device, weaker muscular strength and decreased prehensile score. Apoptosis, neuronal loss, glial cells recruitment and microglia/macrophages M1 signature genes CD32, CD86, IL-1ß, IL-6, MCP1 and iNOS were significantly increased within ischemic lesions of CKD mice. This effect was associated with decreased AMP kinase phosphorylation and increased activation of the NFΚB pathway. Pharmacological targeting of AMP kinase activity, which is known to block microglia/macrophages M1 polarization, appears promising to improve stroke recovery in CKD.


Assuntos
Isquemia Encefálica/fisiopatologia , Córtex Renal/metabolismo , Debilidade Muscular/fisiopatologia , Neurônios/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Apoptose/genética , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Eletrocoagulação , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Córtex Renal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Debilidade Muscular/complicações , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/patologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Teste de Desempenho do Rota-Rod , Índice de Gravidade de Doença , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
8.
J Mol Cell Cardiol ; 129: 2-12, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30769016

RESUMO

INTRODUCTION AND AIMS: Calcific aortic valve disease (CAVD) is the most common heart valve disease in western countries. It has been reported that activation of the calcium-sensing receptor(CaSR) expressed by vascular smooth muscle cells prevents vascular calcification. However, to date, the CaSR's expression and function in cardiac valves have not been studied. The present study sought to evaluate the presence of the CaSR within human valvular interstitial cells (hVICs), assess the CaSR's functionality, and ascertain its involvement in hVIC calcification. METHODS AND RESULTS: Data from Western blot, flow cytometry and immunocytochemistry experiments demonstrated that primary hVICs express the CaSR. The receptor was functional, since the incubation of hVICs with the calcimimetic R-568 significantly increased Ca2+-induced ERK1/2 phosphorylation, and exposure to the calcilytic NPS2143 reduced ERK1/2 activation. A reduction in endogenous CaSR expression by hVICs (using siRNA) was associated with significantly lower levels of Ca2+-induced mineralization (quantified using Alizarin Red staining). Similar data were obtained after the pharmacological inhibition of CaSR activity by the calcilytic NPS2143. In contrast, overexpression of a functional CaSR amplified Ca2+-induced calcification. Pharmacological activation of the CaSR with the calcimimetic R-568 showed similar effects. CaSR's procalcific properties are associated with increased osteogenic transition (as characterized by elevated mRNA expression of bone morphogenetic protein 2 and osterix), and reduced the expression of the calcification inhibitor osteopontin. Histological analysis of 12 human aortic tricuspid valves showed that CaSR expression was greater in calcified areas than in non-calcified areas. These data were confirmed by Western blots. CONCLUSIONS: To the best of our knowledge, this study is the first to have demonstrated that hVICs express a functional CaSR. Taken as a whole, our data suggest that activation of the CaSR expressed by hVICs might be a key promoter of CAVD progression.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Estenose da Valva Aórtica/patologia , Calcinose/patologia , Cálcio/metabolismo , Regulação para Baixo , Humanos , Minerais/metabolismo , Osteogênese , Receptores de Detecção de Cálcio/genética , Valva Tricúspide/metabolismo
9.
Oncotarget ; 8(34): 56460-56472, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915604

RESUMO

INTRODUCTION AND AIMS: Osteolytic bone metastases are observed in advanced cases of breast cancer. In vitro data suggest that the activity of the calcium-sensing receptor (CaSR) expressed by metastatic cells could potentiate their osteolytic potential. This study aimed to demonstrate in vivo the involvement of the CaSR in breast cancer cells osteolytic potential and to identify potential targets linked to CaSR activity. METHODS AND RESULTS: MDA-MB-231 stably transfected with plasmids containing either a full-length wild-type CaSR (CaSR-WT), or a functionally inactive dominant negative mutant (CaSR-DN) or an empty vector (EV) were intratibially injected into Balb/c-Nude mice. X-ray analysis performed 19 days after injection showed a dramatic increase of osteolytic lesions in mice injected with CaSR-WT-transfected cells as compared to mice injected with EV- or CaSR-DN-transfected cells. This was associated with decreased BV/TV ratio and increased tumor burden. Epiregulin, an EGF-like ligand, was identified by a DNA microarray as a possible candidate involved in CaSR-mediated osteolysis. Indeed, in vitro, CaSR overexpression increased both epiregulin expression and secretion as compared to EV- or CaSR-DN-transfected cells. Increased epiregulin expression was also detected in osteolytic bone lesions from mice injected with CaSR-WT-transfected MDA-MB-231. In vitro, exposure of osteoblastic cells (HOB and SaOS2) to exogenous epiregulin significantly decreased OPG mRNA expression. Exposure of osteoblastic cells to conditioned media prepared from CaSR-WT-transfected cells also decreased OPG expression. This effect was partially blocked after addition of an anti-epiregulin antibody. CONCLUSIONS: Overexpression of a functional CaSR in metastatic breast cancer cells dramatically amplifies their osteolytic potential through epiregulin-mediated OPG downregulation.

10.
Joint Bone Spine ; 84(2): 175-181, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27346252

RESUMO

OBJECTIVES: We assessed calcium-sensing receptor (CaSR) expression in monocytes isolated from synovial fluid of patients with different types of rheumatisms and explored whether CaSR expression was related to the inflammatory nature of synovial fluid. METHODS: Forty-one patients were included: osteoarthritis (n=10), microcristallin rheumatisms (n=10), rheumatoid arthritis (n=12) and other inflammatory rheumatisms (n=9). Surface and total CaSR expressions in monocytes isolated from synovial fluid and blood were assessed by flow cytometry analysis. U937 cells were cultured during 24hours in presence of cell-free synovial fluids. RESULTS: Every monocyte population tested express the CaSR intra- and extracellularly. Whereas similar pattern of CaSR expression exist in monocyte isolated from blood or synovial fluids, our results indicate that higher CaSR expression levels can be observed in monocytes from synovial fluids than in circulating monocytes. In both populations of monocytes, surface and total CaSR expressions were found to be significantly increased in patients with osteoarthritis compared to rheumatoid arthritis. Similar data were obtained when U937 cells were incubated with cell-free synovial fluids from osteoarthritis patients. Still present, this effect was significantly lowered when "inflammatory" synovial fluids were introduced in culture. CONCLUSIONS: Our results indicate that CaSR expression in synovial derived monocytes is higher in osteoarthritis than in inflammatory rheumatisms and that CaSR expression is modulated by the nature of the synovial fluid. Given the role played by monocytes in the pathogenesis of chronic rheumatisms, monocytes could be interesting therapeutic targets via the CaSR.


Assuntos
Artrite/metabolismo , Monócitos/metabolismo , Receptores de Detecção de Cálcio/biossíntese , Líquido Sinovial/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Projetos Piloto , Células U937 , Adulto Jovem
11.
J Tissue Eng Regen Med ; 11(2): 382-389, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-24919776

RESUMO

In 2000, Masquelet reported a long bone reconstruction technique using an induced membrane formed around a polymethylmethacrylate (PMMA) spacer placed in the defect with appropriate stabilization followed by secondary bone graft after PMMA removal. This reconstruction procedure allows rapid and safe bone reformation for septic, traumatic, neoplastic or congenital bone defects. A rat model of the Masquelet technique was developed to further characterize the biological activities of this induced membrane. Our model allows healing of a critical-sized femoral defect (8 mm) by means of this procedure over a period of 18 weeks. Comparison of induced membranes obtained 3, 4, 5 and 6 weeks after PMMA insertion indicated that this tissue changes over time. Several mineralization spots and bone cells were observed in contact with the PMMA, when assessed by Alizarin Red, Von Kossa, Alkaline phosphatase and Tartrate-resistant acid phosphatase staining of the membranes. CTR (calcitonin receptor)- and RANK (Receptor Activator of Nuclear factor Kappa B)- positive mononuclear cells were detected in the induced membrane, confirming the presence of osteoclasts in this tissue. These cells were observed in a thin, highly cellular layer in the induced membrane in contact with the PMMA. Together, these findings suggest that the membrane is able to promote osteointegration of autologous corticocancellous bone grafts during the Masquelet technique by creating local conditions that may be favourable to graft bone remodelling and osteointegration. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Regeneração Óssea , Osso e Ossos/patologia , Membranas Artificiais , Osteoclastos/citologia , Procedimentos de Cirurgia Plástica , Animais , Cimentos Ósseos , Transplante Ósseo , Fêmur/patologia , Leucócitos Mononucleares/metabolismo , Masculino , Polimetil Metacrilato/química , Ratos , Ratos Sprague-Dawley , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores da Calcitonina/metabolismo , Procedimentos Cirúrgicos Operatórios , Fatores de Tempo , Transplante Autólogo , Cicatrização
12.
J Cell Physiol ; 230(12): 2927-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25899466

RESUMO

Chronic kidney disease (CKD) is characterized by vascular remodeling and the retention of uremic toxins, several of which are independently associated with the high cardiovascular mortality rate in CKD patients. Whether the association between these uremic toxins and cardiovascular mortality is due to induction of vascular dysfunction and resulting vascular remodeling remains to be determined. This study evaluates the effects of para-cresyl sulfate (PCS), a newly identified uremic toxin, on vascular function and remodeling. PCS acutely induced oxidative stress in both endothelial and vascular smooth muscle cells, with a maximal effect at 0.15 mM, corresponding to the mean "uremic" concentration found in dialysis patients. PCS significantly increased within 30 min phenylephrine-induced contraction of mouse thoracic aorta, through direct activation of rho-kinase, independently of oxidative stress induction, as demonstrated by the capacity of rho-kinase inhibitor Y-27632 to abolish this effect. After exposure of the aorta to PCS for 48 h, we observed inward eutrophic remodeling, a hallmark of uremic vasculopathy characterized by a reduction of the area of both lumen and media, with unchanged media/lumen ratio. In conclusion, elevated PCS concentrations such as those observed in CKD patients, by promoting both vascular dysfunction and vascular remodeling, may contribute to the development of hypertension and to cardiovascular mortality in CKD.


Assuntos
Aorta Torácica/efeitos dos fármacos , Cresóis/toxicidade , Ésteres do Ácido Sulfúrico/toxicidade , Remodelação Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Técnicas de Cultura de Tecidos , Quinases Associadas a rho/metabolismo
13.
Endocrinology ; 156(6): 1965-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25763635

RESUMO

Vascular calcification (VC) is a degenerative disease that contributes to cardiovascular morbidity and mortality. A negative relationship has been demonstrated between VC and calcium sensing receptor (CaSR) expression in the vasculature. Of interest, vitamin D response elements, which allow responsiveness to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], are present in the promoters of the CaSR gene. We hypothesized that 1,25(OH)2D3, by modulating CaSR expression in vascular smooth muscle cells (VSMCs), might protect against VC. Human VSMCs were exposed to increasing concentrations of 1,25(OH)2D3 (0.01-10 nmol/L) in noncalcifying (1.8 mmol/L) or procalcifying Ca(2+)0 condition (5.0 mmol/L). Using quantitative RT-PCR and Western blotting we observed a significant increase in both CaSR mRNA and protein levels after exposure to 1.0 nmol/L 1,25(OH)2D3. This effect was associated with a maximal increase in CaSR expression at the cell surface after 48 hours of 1,25(OH)2D3 treatment, as assessed by flow cytometry. Down-regulation of the vitamin D receptor by small interfering RNA abolished these effects. In the procalcifying condition, 1.0 nmol/L 1,25(OH)2D3 blocked the Ca(2+)0-induced decrease in total and surface CaSR expression and protected against mineralization. Down-regulation of CaSR expression by CaSR small interfering RNA abolished this protective effect. 1,25(OH)2D3 concentrations of 0.5 and 5.0 nmol/L were also effective, but other (0.01, 0.1, and 10 nmol/L) concentrations did not modify CaSR expression and human VSMC mineralization. In conclusion, these findings suggest that nanomolar concentrations of 1,25(OH)2D3 induce a CaSR-dependent protection against VC. Both lower and higher concentrations are either ineffective or may even promote VC. Whether this also holds true in the clinical setting requires further study.


Assuntos
Calcitriol/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Receptores de Detecção de Cálcio/metabolismo , Western Blotting , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Biochim Biophys Acta ; 1853(9): 2158-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25701758

RESUMO

The inverse correlation between dietary calcium intake and the risk of colorectal cancer (CRC) is well known, but poorly understood. Expression of the calcium-sensing receptor (CaSR), a calcium-binding G protein-coupled receptor is downregulated in CRC leading us to hypothesize that the CaSR has tumor suppressive roles in the colon. The aim of this study was to understand whether restoration of CaSR expression could reduce the malignant phenotype in CRC. In human colorectal tumors, expression of the CaSR negatively correlated with proliferation markers whereas loss of CaSR correlated with poor tumor differentiation and reduced apoptotic potential. In vivo, dearth of CaSR significantly increased expression of proliferation markers and decreased levels of differentiation and apoptotic markers in the colons of CaSR/PTH double knock-out mice confirming the tumor suppressive functions of CaSR. In vitro CRC cells stably overexpressing wild-type CaSR showed significant reduction in proliferation, as well as increased differentiation and apoptotic potential. The positive allosteric modulator of CaSR, NPS R-568 further enhanced these effects, whereas treatment with the negative allosteric modulator, NPS 2143 inhibited these functions. Interestingly, the dominant-negative mutant (R185Q) was able to abrogate these effects. Our results demonstrate a critical tumor suppressive role of CaSR in the colon. Restoration of CaSR expression and function is linked to regulation of the balance between proliferation, differentiation, and apoptosis and provides a rationale for novel strategies in CRC therapy.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/prevenção & controle , Receptores de Detecção de Cálcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Substituição de Aminoácidos , Compostos de Anilina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Naftalenos/farmacologia , Fenetilaminas , Propilaminas , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
15.
Arthritis Res Ther ; 16(5): 412, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25134967

RESUMO

INTRODUCTION: Human circulating monocytes express the calcium-sensing receptor (CaSR) and are involved in atherosclerosis. This study investigated the potential association between vascular calcification in rheumatoid arthritis (RA) and CaSR expression in circulating monocytes. METHODS: In this cross-sectional study, 50 RA patients were compared to 25 control subjects matched for age and gender. Isolation of peripheral blood mononuclear cells and flow cytometry analysis were performed to study the surface and total CaSR expression in circulating monocytes. Coronary artery calcium (CAC) and abdominal aortic calcification (AAC) scores were evaluated by computed tomography and an association between these scores and the surface and/or total CaSR expression in circulating monocytes in RA patients was investigated. RESULTS: The two groups were similar in terms of age (RA: 60.9 ± 8.3 years, versus controls: 59.6 ± 5.3 years) and gender (RA: 74.0% females versus 72.0% females). We did not find a higher prevalence and greater burden of CAC or AAC in RA patients versus age- and gender-matched controls. When compared with control subjects, RA patients did not exhibit greater total CaSR (101.6% ± 28.8 vs. 99.9% ± 22.0) or surface CaSR (104.6% ± 20.4 vs. 99.9% ± 13.7) expression, but total CaSR expression in circulating monocytes was significantly higher in RA patients with severe CAC (Agatston score ≥ 200, n = 11) than in patients with mild-to-moderate CAC (1 to 199, n = 21) (P = 0.01). CONCLUSIONS: This study demonstrates for the first time that total CaSR expression in human circulating monocytes is increased in RA patients with severe coronary artery calcification.


Assuntos
Artrite Reumatoide/metabolismo , Calcinose/metabolismo , Doença da Artéria Coronariana/metabolismo , Monócitos/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Idoso , Artrite Reumatoide/sangue , Artrite Reumatoide/complicações , Calcinose/complicações , Doença da Artéria Coronariana/complicações , Estudos Transversais , Feminino , Citometria de Fluxo , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Índice de Gravidade de Doença
16.
PLoS One ; 9(4): e93423, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24695641

RESUMO

Chronic kidney disease (CKD) is regarded as a state of Klotho deficiency and FGF23 excess. In patients with CKD a strong association has been found between increased serum FGF23 and mortality risk, possibly via enhanced atherosclerosis, vascular stiffness, and vascular calcification. The aim of this study was to examine the hypothesis that soluble Klotho and FGF23 exert direct, rapid effects on the vessel wall. We used three in vitro models: mouse aorta rings, human umbilical vein endothelial cells, and human vascular smooth muscle cells (HVSMC). Increasing medium concentrations of soluble Klotho and FGF23 both stimulated aorta contractions and increased ROS production in HVSMC. Klotho partially reverted FGF23 induced vasoconstriction, induced relaxation on phosphate preconstricted aorta and enhanced endothelial NO production in HUVEC. Thus Klotho increased both ROS production in HVSMC and NO production in endothelium. FGF23 induced contraction in phosphate preconstricted vessels and increased ROS production. Phosphate, Klotho and FGF23 together induced no change in vascular tone despite increased ROS production. Moreover, the three compounds combined inhibited relaxation despite increased NO production, probably owing to the concomitant increase in ROS production. In conclusion, although phosphate, soluble Klotho and FGF23 separately stimulate aorta contraction, Klotho mitigates the effects of phosphate and FGF23 on contractility via increased NO production, thereby protecting the vessel to some extent against potentially noxious effects of high phosphate or FGF23 concentrations. This novel observation is in line with the theory that Klotho deficiency is deleterious whereas Klotho sufficiency is protective against the negative effects of phosphate and FGF23 which are additive.


Assuntos
Endotélio Vascular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Aorta/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas Klotho , Camundongos , Camundongos Endogâmicos C57BL , Óxidos de Nitrogênio/metabolismo , Fosfatos/metabolismo , Insuficiência Renal Crônica/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/efeitos da radiação , Vasodilatação/fisiologia
17.
Cardiovasc Res ; 101(2): 256-65, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24217682

RESUMO

AIMS: Vascular calcification (VC) contributes to morbidity and mortality in patients with chronic kidney disease (CKD). Allosteric modulators of the calcium (Ca)-sensing receptor (CaSR) may slow the progression of VC in CKD patients either by reducing serum parathyroid hormone (PTH), Ca, and phosphate levels or by a direct effect on the vessel wall. The aim of this study was to examine the effects of calcimimetics on CaSR expression, cell phenotype, and mineral deposition in human vascular smooth muscle cells (h-VSMCs). METHODS AND RESULTS: Primary h-VSMCs were exposed for 14 days to increasing concentrations of Ca(2+) (from 1.8 to 5 mmol/L) in the presence or absence of calcimimetics R-568 or AMG 641 (0.1 µmol/L). Mineralization was detected by Alizarin red staining, and the cell phenotype was assessed using immunocytochemistry and qRT-PCR. CaSR expression was evaluated using flow cytometry. Short- and long-term exposure (1 day to 14 days) of h-VSMCs to calcimimetics promoted CaSR protein transport from the endoplasmic reticulum to the plasma membrane with enhanced CaSR expression on the cell surface, together with an increase in total cell CaSR expression due to enhanced biosynthesis. In pro-mineralizing conditions, exposure to calcimimetics counteracted the Ca(2+)-dependent reduction of CaSR expression, decreased matrix collagen secretion, and mineral deposition by ~90%. These effects involved CaSR activation since it could be inhibited by CaSR siRNA, but not scrambled siRNA. CONCLUSIONS: The calcimimetic-dependent increase in biosynthesis and activation of the CaSR in h-VSMCs probably play a key role in the protection against calcium-induced VC.


Assuntos
Compostos de Anilina/farmacologia , Compostos de Bifenilo/farmacologia , Calcimiméticos/farmacologia , Cálcio/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fenetilaminas/farmacologia , Receptores de Detecção de Cálcio/efeitos dos fármacos , Calcificação Vascular/prevenção & controle , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Colágeno Tipo I/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Propilaminas , Transporte Proteico , Interferência de RNA , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Fatores de Tempo , Transfecção , Regulação para Cima , Calcificação Vascular/genética , Calcificação Vascular/metabolismo
18.
PLoS One ; 8(10): e74800, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098349

RESUMO

Expression of the calcium-sensing receptor (CaSR) has previously been demonstrated in human circulating monocytes (HCM). The present study was designed to measure CaSR expression in HCM and to examine its potential modulation by pro-inflammatory cytokines, Ca2+, vitamin D sterols in U937 cell line. Twenty healthy volunteers underwent blood sampling with subsequent isolation of peripheral blood mononuclear cells (PBMC) at 3 visits. Flow cytometry analysis (FACS) was performed initially (V1) and 19 days later (V2) to examine intra- and intersubject fluctuations of total and surface CaSR expression in HCM and 15 weeks later (V3) to study the effect of vitamin D supplementation. In vitro experiments were conducted to assess the effects of pro-inflammatory cytokines, calcidiol, calcitriol and Ca2+ on CaSR expression in U937 cell line. By FACS analysis, more than 95% of HCM exhibited cell surface CaSR staining. In contrast, CaSR staining failed to detect surface CaSR expression in other PBMC. After cell permeabilization, total CaSR expression was observed in more than 95% of all types of PBMC. Both total and surface CaSR expression in HCM showed a high degree of intra-assay reproducibility (<3%) and a moderate intersubject fluctuation. In response to vitamin D supplementation, there was no significant change for both total and surface CaSR expression. In the in vitro study, U937 cells showed strong total and surface CaSR expression, and both were moderately increased in response to calcitriol exposure. Neither total nor surface CaSR expression was modified by increasing Ca2+ concentrations. Total CaSR expression was concentration dependently decreased by TNFα exposure. In conclusion, CaSR expression can be easily measured by flow cytometry in human circulating monocytes. In the in vitro study, total and surface CaSR expression in the U937 cell line were increased by calcitriol but total CaSR expression was decreased by TNFα stimulation.


Assuntos
Regulação da Expressão Gênica , Monócitos/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Adolescente , Adulto , Idoso , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Lineares , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Receptores de Detecção de Cálcio/sangue , Fator de Necrose Tumoral alfa/farmacologia , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/metabolismo , Adulto Jovem
19.
Ther Apher Dial ; 15(2): 135-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21426504

RESUMO

Uremic syndrome is attributed to the progressive retention of a large number of compounds, such as indoxyl sulfate, which under physiological conditions are excreted by the kidneys. Previous in vitro studies have demonstrated that uremic indoxyl sulfate concentrations induce a weak increase in the proliferation of both rat and human vascular aortic smooth muscle cells (hVASMC) after short term exposition to the toxin (i.e. 24 h). In the present study, we evaluated indoxyl sulfate effects on the proliferation of hVASMC at three different concentrations after long-term exposure (seven days). In contrast to previously published studies, we observed a dose-dependent and significant inhibitory effect of this toxin on hVASMC proliferation. We also demonstrated that indoxyl sulfate inhibits epidermal growth factor-induced hVASMC proliferation after long-term exposure. Indoxyl sulfate effects were associated with a dose-dependent induction of intracellular reactive oxygen species and up-regulation of p21 and p27 protein expression. Chronic exposure to indoxyl sulfate produces a significant inhibitory effect on hVASMC proliferation. The relevance of these findings must be evaluated by further studies, particularly in an in vivo setting.


Assuntos
Proliferação de Células/efeitos dos fármacos , Indicã/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Relação Dose-Resposta a Droga , Fator de Crescimento Epidérmico/farmacologia , Humanos , Indicã/administração & dosagem , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
20.
Bone ; 46(5): 1416-23, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20149906

RESUMO

While the processes involved in the formation, maturation and apoptosis of osteoclasts have been investigated extensively in previous studies, little is known about the mechanisms responsible for the localization and homing of osteoclast precursor cells to the bone environment in order to initiate the bone remodeling process. Recent studies have suggested that the extracellular Ca(2+) (Ca(2+)(o)) concentration gradient present near the bone environment may be one of the participating factors, producing a chemoattractant effect on osteoclast precursors. Using the murine osteoclast precursor cells of the monocyte-macrophage lineage, the RAW 264.7 cell line, we have shown that Ca(2+)(o) increases the migration of these cells in a directional manner. The participation of the calcium sensing receptor (CaR) in this effect was tested by knocking down its expression through RNA interference, which resulted in an abolition of the migratory response. By the use of specific pathway inhibitors and western blot analysis, the phosphoinositide 3-kinase (PI3K)/Akt and phospholipase Cbeta pathways were shown to be implicated in the migratory effect. The implication of the Akt pathway in the Ca(2+)(o)-induced chemoattraction of RAW 264.7 cells was also confirmed by transducing the cells with the fusion protein TAT-dominant negative-Akt, which decreased the migratory effect. In contrast, the MAPK pathways (ERK1/2, p38 and JNK) were not involved in the production of the migratory effect. We conclude that through the activation of the CaR and subsequent signaling via the PI3K/Akt pathway, Ca(2+)(o) produces a chemoattractant effect on the osteoclast precursor RAW 264.7 cells. These results suggest that the Ca(2+)(o) gradient present near the bone may be one of the initiating factors for the homing of osteoclast precursors to bone, thus possibly playing a role in the initiation of bone remodeling.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Cálcio/imunologia , Movimento Celular/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Detecção de Cálcio/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , Animais , Linhagem Celular , Camundongos , Osteoclastos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Detecção de Cálcio/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...